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Let H be a real Hilbert space and let T: H � 2H be a maximal monotone
operator. In this paper, we first introduce two algorithms of approximating
solutions of maximal monotone operators. One of them is to generate a strongly
convergent sequence with limit v # T &10. The other is to discuss the weak con-
vergence of the proximal point algorithm. Next, using these results, we consider the
problem of finding a minimizer of a convex function. Our methods are motivated
by Halpern's iteration and Mann's iteration. � 2000 Academic Press
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1. INTRODUCTION

Let H be a real Hilbert space and let T: H � 2H be a maximal monotone
operator. Then the problem of finding a solution v # H with 0 # Tv has been
investigated by many researchers; see, for example, Bruck [3], Rockafellar
[14], Bre� zis and Lions [2], Reich [12, 13], Nevanlinna and Reich [11],
Bruck and Reich [4], Takahashi and Ueda [16], Jung and Takahashi
[7], Khang [8] and others. One popular method of solving 0 # Tv is the
proximal point algorithm. The proximal point algorithm generates, for any
starting point x0=x # H, a sequence [xn] in H by the rule

xn+1=Jrn
xn , n=0, 1, 2, ..., (1.1)

where Jrn
=(I+rnT )&1 and [rn] is a sequence of positive real numbers.

Some of them dealt with the weak convergence of the sequence [xn]
generated by (1.1) and others proved strong convergence theorems by
imposing strong assumptions on T. On the other hand, Wittmann [18]
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and Mann [9] considered the following iterative schemes for finding a
fixed point of a nonexpansive mapping U of H into itself,

xn+1=:nx+(1&:n) Uxn , n=0, 1, 2, ... (1.2)

and

xn+1=:nxn+(1&:n) Uxn , n=0, 1, 2, ..., (1.3)

respectively, where x0=x # H and [:n] is a sequence in [0, 1]; see originally
Halpern [6] for (1.2). Wittmann proved that if the set F(U) of fixed points
of U is nonempty, then the sequence [xn] generated by (1.2) converges
strongly to some z # F(U). Mann also proved that the sequence [xn]
generated by (1.3) converges weakly to some z # F(U).

In this paper, motivated by (1.2) and (1.3), we introduce the following
two iterative schemes,

xn+1=:nx+(1&:n) Jrn
xn , n=0, 1, 2, ... (1.4)

and

xn+1=:nxn+(1&:n) Jrn
xn , n=0, 1, 2, ..., (1.5)

where x0=x # H, [:n] is a sequence in [0, 1] and [rn] is a sequence in
(0, �). Then we show that the sequence [xn] generated by (1.4) converges
strongly to some v # T &10 and the sequence [xn] generated by (1.5) con-
verges weakly to some v # T &10. Further, using these results, we investigate
two algorithms in the case of T=�f, where f is a proper lower semicon-
tinuous convex function.

2. PRELIMINARIES

Throughout this paper, we denote the set of all nonnegative integers by
N. All results in this paper are set in a real Hilbert space H with norm & }&
and inner product ( , ). When [xn] is a sequence in H, we denote strong
convergence of [xn] to x # H by xn � x and weak convergence by xn ( x.
In a real Hilbert space H, we have

&*x+(1&*) y&2=* &x&2+(1&*) &y&2&*(1&*) &x& y&2

for all x, y # H and * # [0, 1]. A mapping U: H � H is said to be non-
expansive if &Ux&Uy&�&x& y& for all x, y # H. We denote the set of all
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fixed points of U by F(U). A multivalued operator T: H � 2H with domain
D(T )=[z # H : Tz{<] and range R(T )=� [Tz : z # D(T )] is said to be
monotone if for each xi # D(T ) and yi # Txi , i=1, 2, we have (x1&x2 ,
y1& y2) �0. A monotone operator T is said to be maximal if its graph
G(T )=[(x, y) : y # Tx] is not properly contained in the graph of any
other monotone operator. Let I denote the identity operator on H and let
T: H � 2H be a maximal monotone operator. Then we can define, for each
r>0, a nonexpansive single valued mapping Jr : H � H by Jr=(I+rT )&1.
It is called the resolvent (or the proximal mapping) of T. We also define
the Yosida approximation Ar by Ar=(I&Jr)�r. We know that Ar x # TJr x
and &Arx&�inf[&y& : y # Tx] for all x # H. We also know that T &10=F(Jr)
for all r>0; see, for instance, Rockafellar [14] or Takahashi [15]. It is
shown in Rockafellar [14, Proposition 1] that

&Jrx&Jry&2+r2 &Arx&Ar y&2�&x& y&2 (2.1)

for all x, y # H and r>0. Let f: H � (&�, �] be a proper lower semicon-
tinuous convex function. Then we can define the subdifferential �f of f by

�f (x)=[z # H : f ( y)� f (x)+( y&x, z) for all y # H]

for all x # H. It is well known that �f is a maximal monotone operator of
H into itself; see Minty [10].

3. STRONG CONVERGENCE THEOREM

Let T: H � 2H be a maximal monotone operator and let Jr : H � H be
the resolvent of T for each r>0. Then we consider the following algorithm.
The sequence [xn] is generated by

x0=x # H,

{ yn rJrn
xn , (3.1)

xn+1=:nx+(1&:n) yn , n # N,

where [:n]/[0, 1] and [rn]/(0, �). Here the criterion for the approx-
imate computation of yn in (3.1) will be

&yn&Jrn
xn&�$n , (3.2)

where ��
n=0 $n<�. Motivated by Wittmann [18], we obtain the follow-

ing theorem.
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Theorem 1. Let T: H � 2H be a maximal monotone operator. Let x # H
and let [xn] be a sequence generated by (3.1) under criterion (3.2), where
[:n]/[0, 1] and [rn]/(0, �) satisfy limn � � :n=0, ��

n=0 :n=� and
limn � � rn=�. If T &10{<, then [xn] converges strongly to Px, where P
is the metric projection of H onto T &10.

Proof. From T &10{<, there exists u # T &10 such that Js u=u for all
s>0. Then we have

&x1&u&=&:0x+(1&:0) y0&u&

�:0 &x&u&+(1&:0) &y0&u&

�:0 &x&u&+(1&:0)($0+&Jr0
x0&u&)

�:0 &x&u&+(1&:0)($0+&x0&u&)

�&x&u&+$0 .

If &xk&u&�&x&u&+�k&1
i=0 $i holds for some k # N"[0], we can similarly

show &xk+1&u&�&x&u&+�k
i=0 $ i . Therefore, from ��

n=0 $n<�, [xn]
is bounded. Hence [Jrn

xn] and [ yn] are also bounded. Then, from rn � �,
we obtain

lim
n � �

&Arn
xn&= lim

n � � "
xn&Jrn

xn

rn "=0.

Next we will show

lim sup
n � �

(x&Px, yn&Px) �0, (3.3)

where P is the metric projection of H onto T &10. To prove this, it is
sufficient to show

lim sup
n � �

(x&Px, Jrn
xn&Px) �0

because yn&Jrn
xn � 0. Now there exists a subsequence [xni

]/[xn] such
that

lim
i � �

(x&Px, Jrni
xni

&Px)=lim sup
n � �

(x&Px, Jrn
xn&Px) .
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Since [Jrn
xn] is bounded, we may assume that [Jrni

xni
] converges weakly

to some v # H. Then it follows that v # T &10. Indeed, since Arn
xn # TJrn

xn

and T is monotone,

(z&Jrni
xni

, z$&Arni
xni

)�0

whenever z$ # Tz. From Arn
xn � 0, we obtain (z&v, z$)�0 whenever

z$ # Tz. Hence, from the maximality of T, we have v # T &10. Since P is the
metric projection of H onto T &10, we obtain

lim sup
n � �

(x&Px, Jrn
xn&Px)= lim

i � �
(x&Px, Jrni

xni
&Px)

=(x&Px, v&Px)

�0.

Thus we get (3.3).
Let =>0. Then, by ��

n=0 $n<�, (3.3) and :n � 0, there exists m # N
such that

M :
�

j=m

$j�
=
2

, (x&Px, yn&Px) �
=
6

and :n &x&Px&2�
=
6

for all n�m, where M=supn # N ($n+2 &xn&Px&). This implies

&xn+m+1&Px&2=&:n+mx+(1&:n+m) yn+m&Px&2

=:2
n+m &x&Px&2+(1&:n+m)2 &yn+m&Px&2

+2:n+m(1&:n+m)(x&Px, yn+m&Px)

�:n+m
=
2

+(1&:n+m)($n+m+&Jrn+m
xn+m&Px&)2

�:n+m
=
2

+(1&:n+m)($n+m+&xn+m&Px&)2

�:n+m
=
2

+(1&:n+m)($n+mM+&xn+m&Px&2)

�:n+m
=
2

+$n+mM+(1&:n+m) &xn+m&Px&2
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for all n # N. By induction, we obtain

&xn+m+1&Px&2�{1& `
n+m

j=m

(1&: j)= =
2

+M :
n+m

j=m

$j+{ `
n+m

j=m

(1&:j)= &xm&Px&2

for all n # N. This implies

&xn+m+1&Px&2�
=
2

+M :
n+m

j=m

$j+{ `
n+m

j=m

(1&:j)= &xm&Px&2

�
=
2

+M :
n+m

j=m

$j+exp \& :
n+m

j=m

:j+ &xm&Px&2.

Therefore, from ��
n=0 :n=�, we have

lim sup
n � �

&xn&Px&2=lim sup
n � �

&xn+m+1&Px&2�
=
2

+M :
�

j=m

$ j�=.

Since = is arbitrary, we can conclude that [xn] converges strongly to Px.
K

4. WEAK CONVERGENCE THEOREM

In this section, we discuss the weak convergence of the proximal point
algorithm. The sequence [xn] is generated by

x0=x # H,

{ yn rJrn
xn , (4.1)

xn+1=:n xn+(1&:n) yn , n # N,

where [:n]/[0, 1] and [rn]/(0, �).

Lemma 2. Let T: H � 2H be a maximal monotone operator and let P be
the metric projection of H onto T &10. Let x # H and let [xn] be a sequence
generated by (4.1) under criterion (3.2), where [:n]/[0, 1] and [rn]/(0, �).
If T &10{<, then [Pxn] converges strongly to v # T &10, which is a unique
element of T &10 such that

lim
n � �

&xn&v&=inf[ lim
n � �

&xn&u& : u # T &10].
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Proof. Let u be an element of T &10. Then we have

&xn+1&u&=&:n xn+(1&:n) yn&u&

�:n &xn&u&+(1&:n) &yn&u&

�:n &xn&u&+(1&:n)($n+&Jrn
xn&u&)

�:n &xn&u&+(1&:n)($n+&xn&u&)

�&xn&u&+$n

for all n # N. Hence, from ��
n=0 $n<� and Tan and Xu [17, Lemma 1],

g(u)=limn � � &xn&u& exists. Then g is a continuous convex function and
g(u) � � as &u& � �. Hence g attains its infimum over T &10. Let
l=inf[g(u) : u # T &10] and K=[w # T &10 : g(w)=l]. Fix v # K. Since P
is the metric projection of H onto T &10, we have &xn&Pxn &�&xn&v&
for all n # N and hence lim supn � � &xn & Pxn& � l. Suppose that
lim supn � � &xn&Pxn&<l. Then we can choose a>0 and m # N such that
&xn&Pxn &�l&a for all n�m. Therefore we have

&xn+h+1&Pxn&�&xn&Pxn&+ :
n+h

i=n

$i

�l&a+ :
n+h

i=n

$ i

for all n�m and h # N. Hence we obtain

l� lim
h � �

&xh&Pxn &

= lim
h � �

&xn+h+1&Pxn&

�l&a+ :
�

i=n

$i

for all n�m. Since ��
n=0 $n<�, we have l�l&a<l. This is a contradic-

tion. So we can conclude that lim supn � � &xn&Pxn&=l.
Next we will show limn � � Pxn=v. If not, there exists =>0 such that for

any h # N, &Pxh$&v&�= for some h$�h. Let b>0 such that

b<�l2+
=2

8
&l.
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Then we can take h$ # N such that

M :
�

i=h$

$i�
=2

8
, &xh$&Pxh$&�l+b and &xh$&v&�l+b,

where M=��
n=0 $n+2 supn # N &xn&(Pxn+v)�2&. Therefore we have

"xn+h$+1&
Pxh$+v

2 "
2

�\"xh$&
Pxh$+v

2 "+ :
n+h$

i=h$

$i +
2

�"xh$&
Pxh$+v

2 "
2

+M :
n+h$

i=h$

$i

=2 "xh$&Pxh$

2 "
2

+2 "xh$&v
2 "

2

&"Pxh$&v
2 "

2

+M :
n+h$

i=h$

$i

�2 \l+b
2 +

2

+2 \l+b
2 +

2

&
=2

4
+M :

n+h$

i=h$

$ i

=(l+b)2&
=2

4
+M :

n+h$

i=h$

$i

for all n # N. This implies

l2� lim
n � � "xn+h$+1&

Pxh$+v
2 "

2

�(l+b)2&
=2

4
+M :

�

i=h$

$ i

�(l+b)2&
=2

8

<l2.

This is a contradiction. Therefore [Pxn] converges strongly to v # T &10.
Consequently v is a unique element of T &10 such that g(v)=inf[g(u) :
u # T &10]. K

Theorem 3. Let T: H � 2H be a maximal monotone operator and let
P be the metric projection of H onto T &10. Let x # H and let [xn] be a
sequence generated by (4.1) under criterion (3.2), where [:n]/[0, 1] and
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[rn]/(0, �) satisfy :n # [0, k] for some k with 0<k<1 and limn � � rn

=�. If T &10{<, then [xn] converges weakly to v # T &10, where v=
limn � � Pxn .

Proof. As in the proof of Lemma 2, limn � � &xn&u& exists for all
u # T &10 and, in particular, [xn] is bounded. Therefore there exists a sub-
sequence [xni

]/[xn] such that [xni
] converges weakly to some v # H. We

will prove v # T &10. We first show limn � � &xn+1& yn&=0. In fact, we
have

(1&k) :2
n &xn& yn &2

�(1&:n) :n &xn& yn &2

=:n &xn&u&2+(1&:n) &yn&u&2&&xn+1&u&2

�:n &xn&u&2+(1&:n)($n+&Jrn
xn&u&)2&&xn+1&u&2

�:n &xn&u&2+(1&:n)($n+&xn&u&)2&&xn+1&u&2

�:n &xn&u&2+(1&:n)($n M+&xn&u&2)&&xn+1&u&2

�&xn&u&2&&xn+1&u&2+$nM,

where M=supn # N ($n+2 &xn&u&). Therefore limn � � &xn+1& yn &=
limn � � :n&xn& yn &=0. Then we may also assume that yni

( v and hence
Jrni

xni
( v because yn&Jrn

xn � 0. Since Arn
xn # TJrn

xn and T is monotone,

(z&Jrni
xni

, z$&Arni
xni

)�0 (4.2)

holds whenever z$ # Tz. Since rn � �, we have

lim
n � �

&Arn
xn&= lim

n � � "
xn&Jrn

xn

rn "=0.

Tending i to � in (4.2), we obtain

(z&v, z$)�0

for all z, z$ with z$ # Tz. Then the maximality of T implies v # T &10.
From Lemma 2, [Pxn] converges strongly to some v$ # T &10. Since P is

the metric projection of H onto T &10, we have

(xni
&Pxni

, w&Pxni
)�0

for all w # T &10. Then we have

(v&v$, w&v$)�0
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for all w # T &10. Putting w=v, we obtain &v&v$&2�0 and hence v=v$.
This implies that each weak subsequential limit of [xn] is equal to the
strong limit of [Pxn]. Therefore [xn] converges weakly to v # T &10, where
v=limn � � Pxn . K

Next we study the rate of convergence of (4.1). According to Rockafellar
[14], T &1 is said to be Lipschitz continuous at 0 # H with modulus a�0
if there exists a unique solution z0 to 0 # Tz (i.e., T &10=[z0]) and for
some {>0, we have

&z&z0&�a &w& (4.3)

whenever z # T &1w and &w&�{. Rockafellar [14, Theorem 2] showed
that if T &1 is Lipschitz continuous at 0 and rn � �, then the rate of
convergence of (1.1) is superlinear. Then, using Rockafellar's method, we
obtain the following result.

Theorem 4. Let T: H � 2H be a maximal monotone operator. Let [xn]
be a sequence generated by (4.1) under criterion

&yn&Jrn
xn&�#n &yn&xn &,

where [:n]/[0, 1], [rn]/(0, �) and [#n]/[0, �) satisfy :n # [0, k] for
some k with 0<k<1, limn � � rn=� and limn � � #n=0. If [xn] is bounded
and T &1 is Lipschitz continuous at 0 with modulus a�0, then [xn] converges
strongly to v=T &10. Moreover there exists an integer N>0 such that

&xn+1&v&�%n&xn&v&

for all n�N, where

+n=
a

- a2+r2
n

, %n=:n+
(1&:n)(+n+#n)

1&#n
and 0�%n<1

for all n�N.

Proof. Since T &1 is Lipschitz continuous at 0 with modulus a�0, for
some {>0, we have &z&v&�a &w& whenever z # T &1w and &w&�{. From
&Jrn

xn&v&�&xn&v&, [Jrn
xn] is bounded. Hence we obtain Arn

xn � 0.
Then there exists an integer N>0 such that &Arn

xn&�{ and %n=:n+
(1&:n)(+n+#n)�(1&#n)<1 for all n�N. Since Jrn

xn # T &1Arn
xn , we have

&Jrn
xn&v&�a &Arn

xn & (4.4)
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for all n�N. It follows from (2.1) that

&Jrn
xn&v&2+r2

n &Arn
xn&2�&xn&v&2. (4.5)

Combining (4.4) and (4.5), we obtain

&Jrn
xn&v&�

a

- a2+r2
n

&xn&v&

for all n�N. Therefore we have

&yn&v&�&yn&Jrn
xn&+&Jrn

xn&v&

�#n &yn&xn&+
a

- a2+r2
n

&xn&v&

�#n&yn&v&+#n &xn&v&++n &xn&v&

for all n�N. This implies

&yn&v&�
+n+#n

1&#n
&xn&v&

for all n�N. Hence we obtain

&xn+1&v&�:n &xn&v&+(1&:n) &yn&v&

�\:n+
(1&:n)(+n+#n)

1&#n + &xn&v&

=%n &xn&v&

for all n�N. This completes the proof. K

This theorem shows that the rate of convergence of (4.1) is linear and if
limn � � :n=0 then the rate is superlinear.

5. APPLICATIONS TO MINIMIZATION PROBLEM

In this section, we investigate our algorithms in the case of T=�f, where
f is a proper lower semicontinuous convex function. Our discussion follows
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Rockafellar [14, Section 4]. If T=�f, the algorithm (3.1) is reduced to the
following:

x0=x # H,

{ yn rargmin
z # H {f (z)+

1
2rn

&z&xn &2= , (5.1)

xn+1=:nx+(1&:n) yn , n # N,

where [:n]/[0, 1] and [rn]/(0, �). Here we consider the following
criterion:

d(0, Sn( yn))�
$n

rn
, (5.2)

where ��
n=0 $n<�, Sn(z)=�f (z)+(z&xn)�rn and d(0, A)=inf[&x& :

x # A]. About (5.2), the following lemma was proved in Rockafellar [14,
Proposition 3]

Lemma 5. If yn is chosen according to criterion (5.2), then

&yn&Jrn
xn&�$n

holds, where Jrn
=(I+rn �f )&1.

Theorem 6. Let f: H � (&�, �] be a proper lower semicontinuous
convex function. Let x # H and let [xn] be a sequence generated by (5.1)
under criterion (5.2), where [:n]/[0, 1] and [rn]/(0, �) satisfy limn � � :n

=0, ��
n=0 :n=� and limn � � rn=�. If (�f )&1 0{<, then [xn] converges

strongly to v # H, which is the minimizer of f nearest to x. Further we have

f (xn+1)& f (v)�:n( f (x)& f (v))

+
1&:n

rn
&yn&v& ($n+&yn&xn &).

Proof. Putting gn(z)= f (z)+&z&xn&2�2rn , we obtain

�gn(z)=�f (z)+
1
rn

(z&xn)=Sn(z)

for all z # H and

Jrn
xn=(I+rn �f )&1 xn=argmin

z # H
gn(z).
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It follows from Theorem 1 and Lemma 5 that [xn] converges strongly to
v # H and f (v)=minz # H f (z). Since �gn( yn) is a nonempty closed convex
set, we can find the unique element wn of �gn( yn) nearest to the origin.
Then we have

wn&
1
rn

( yn&xn) # �f ( yn)

and

&wn&�
$n

rn
. (5.3)

The definition of subdifferential yields

f (v)� f ( yn)+�v& yn , wn&
1
rn

( yn&xn)�. (5.4)

From (5.3) and (5.4), we obtain

f (xn+1)& f (v)=f (:n x+(1&:n) yn)& f (v)

�:n( f (x)& f (v))+(1&:n)( f ( yn)& f (v))

�:n( f (x)& f (v))+(1&:n) �yn&v, wn&
1
rn

( yn&xn)�
�:n( f (x)& f (v))+(1&:n) &yn&v& \&wn&+

1
rn

&yn&xn &+
�:n( f (x)& f (v))+

1&:n

rn
&yn&v& ($n+&yn&xn&).

This completes the proof. K

Similarly we can show the following theorem concerning (4.1). Compare
this result with Theorem 6.

Theorem 7. Let f: H � (&�, �] be a proper lower semicontinuous
convex function. Let x # H and let [xn] be a sequence generated by

x0=x,

{ yn rargmin
z # H {f (z)+

1
2rn

&z&xn&2= ,

xn+1=:nxn+(1&:n) yn , n # N
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under criterion (5.2), where [:n]/[0, 1] and [rn]/(0, �) satisfy :n # [0, k]
for some k with 0<k<1 and limn � � rn=�. If (�f )&1 0{< and [un] is
a sequence of points of (�f )&1 0 nearest to xn , then [xn] converges weakly
to v # H, which is the minimizer of f and satisfies v=limn � � un . Further we
have

f (xn+1)& f (v)�:n( f (xn)& f (v))+
1&:n

rn
&yn&v& ($n+&yn&xn&).

Proof. As in the proof of Theorem 6, we can prove this theorem. K

ACKNOWLEDGMENTS

The authors express their sincere thanks to the referee for a careful reading of the
manuscript and valuable suggestions.

REFERENCES

1. S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive
semigroups by the Mann iteration process, Ann. Univ. Mariae Curie-Sklodowska Sect. A
51 (1997), 1�16.

2. H. Bre� zis and P. L. Lions, Produits infinis de resolvants, Israel J. Math. 29 (1978),
329�345.

3. R. E. Bruck, A strongly convergent iterative solution of 0 # U(x) for a maximal monotone
operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114�126.

4. R. E. Bruck and S. Reich, A general convergence principle in nonlinear functional
analysis, Nonlinear Anal. 5 (1980), 939�950.

5. O. Gu� ler, On the convergence of the proximal point algorithm for convex minimization,
SIAM J. Control Optim. 29 (1991), 403�419.

6. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967),
957�961.

7. J. S. Jung and W. Takahashi, Dual convergence theorems for the infinite products of
resolvents in Banach spaces, Kodai Math. J. 14 (1991), 358�364.

8. D. B. Khang, On a class of accretive operators, Analysis 10 (1990), 1�16.
9. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506�510.

10. G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific J. Math.
14 (1964), 243�247.

11. O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of
iterative methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979),
44�58.

12. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces,
J. Math. Anal. Appl. 67 (1979), 274�276.

13. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach
spaces, J. Math. Anal. Appl. 75 (1980), 287�292.

239MAXIMAL MONOTONE OPERATORS



14. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J.
Control Optim. 14 (1976), 877�898.

15. W. Takahashi, ``Nonlinear Functional Analysis,'' Kindai-kagaku-sha, Tokyo, 1988. [Japanese]
16. W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of

accretive operators, J. Math. Anal. Appl. 104 (1984), 546�553.
17. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the

Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301�308.
18. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58

(1992), 486�491.

240 KAMIMURA AND TAKAHASHI


	1. INTRODUCTION 
	2. PRELIMINARIES 
	3. STRONG CONVERGENCE THEOREM 
	4. WEAK CONVERGENCE THEOREM 
	5. APPLICATIONS TO MINIMIZATION PROBLEM 
	ACKNOWLEDGMENTS 
	REFERENCES 

