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Let H be a real Hilbert space and let T H— 2" be a maximal monotone
operator. In this paper, we first introduce two algorithms of approximating
solutions of maximal monotone operators. One of them is to generate a strongly
convergent sequence with limit ve 7 ~!0. The other is to discuss the weak con-
vergence of the proximal point algorithm. Next, using these results, we consider the
problem of finding a minimizer of a convex function. Our methods are motivated
by Halpern’s iteration and Mann’s iteration.  © 2000 Academic Press
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1. INTRODUCTION

Let H be a real Hilbert space and let T: H — 2% be a maximal monotone
operator. Then the problem of finding a solution v € H with 0 € Tv has been
investigated by many researchers; see, for example, Bruck [ 3], Rockafellar
[14], Brézis and Lions [2], Reich [12, 13], Nevanlinna and Reich [11],
Bruck and Reich [4], Takahashi and Ueda [16], Jung and Takahashi
[7], Khang [8] and others. One popular method of solving 0 7v is the
proximal point algorithm. The proximal point algorithm generates, for any
starting point x,=x€ H, a sequence {x,} in H by the rule

Xps1=Jp Xp, n=0,1,2,.., (L.1)

where J, =(I+r,T )~' and {r,} is a sequence of positive real numbers.
Some of them dealt with the weak convergence of the sequence {x,}
generated by (1.1) and others proved strong convergence theorems by
imposing strong assumptions on 7. On the other hand, Wittmann [18]
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and Mann [9] considered the following iterative schemes for finding a
fixed point of a nonexpansive mapping U of H into itself,

Xpp1=0,X+ (1 —a,) Ux,, n=0,1,2,.. (L2)
and
Xpi1=0,X,+ (1 —0a,) Ux,, n=0,1,2,.., (L.3)

respectively, where x,=x€ H and {a,} is a sequence in [0, 1]; see originally
Halpern [ 6] for (1.2). Wittmann proved that if the set F( U) of fixed points
of U is nonempty, then the sequence {x,} generated by (1.2) converges
strongly to some ze F(U). Mann also proved that the sequence {x,}
generated by (1.3) converges weakly to some z e F(U).
In this paper, motivated by (1.2) and (1.3), we introduce the following
two iterative schemes,
Xpi1=0,X+(1—a,)J, x n=0,1,2,.. (L4)

n n>

and

Xpy1=0,X, + (1 —o,) J, x,, n=0,1,2,.., (L5)
where xo=x€H, {a,} is a sequence in [0,1] and {r,} is a sequence in
(0, c0). Then we show that the sequence {x,} generated by (1.4) converges
strongly to some ve 7 ~'0 and the sequence {x,} generated by (1.5) con-
verges weakly to some ve T ~'0. Further, using these results, we investigate
two algorithms in the case of 7'=0f, where f is a proper lower semicon-
tinuous convex function.

2. PRELIMINARIES

Throughout this paper, we denote the set of all nonnegative integers by
N. All results in this paper are set in a real Hilbert space H with norm ||- ||
and inner product <, >. When {x,} is a sequence in H, we denote strong
convergence of {x,} to xe H by x, — x and weak convergence by x,, — x.
In a real Hilbert space H, we have

IAx+(1=24) 2 =2 IxI>+ (1= 2) [y[* = A1 =2) |x— y]?

for all x, ye H and A€[0,1]. A mapping U: H— H is said to be non-
expansive if | Ux — Uy| < | x— y|| for all x, y e H. We denote the set of all
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fixed points of U by F(U). A multivalued operator T: H — 2 with domain
D(T)={zeH:Tz# &} and range R(T)=) {Tz:zeD(T)} is said to be
monotone if for each x;, € D(T) and y,e Tx;, i=1,2, we have {x; —Xx,,
y1— Y2y =0. A monotone operator 7T is said to be maximal if its graph
G(T)={(x, y): ye Tx} is not properly contained in the graph of any
other monotone operator. Let / denote the identity operator on H and let
T- H — 2% be a maximal monotone operator. Then we can define, for each
r> 0, a nonexpansive single valued mapping J,: H— H by J,=(I+rT)" ..
It is called the resolvent (or the proximal mapping) of 7. We also define
the Yosida approximation A4, by 4,=(I—J,)/r. We know that 4,xe TJ, x
and |4, x| <inf{|[ly|| : ye Tx} for all xe H. We also know that 7 ~'0 = F(J,)
for all r>0; see, for instance, Rockafellar [ 14] or Takahashi [15]. It is
shown in Rockafellar [ 14, Proposition 1] that

ITox =T,y 2 + 72 | 4,x — A, > < |x = y|? (2.1)

for all x, ye H and r >0. Let f: H— (— o0, o0 ] be a proper lower semicon-
tinuous convex function. Then we can define the subdifferential of of f by

f(x)={zeH: f(y)=f(x)+<y—x,z) forall ye H}

for all xe H. It is well known that Jf is a maximal monotone operator of
H into itself; see Minty [10].

3. STRONG CONVERGENCE THEOREM

Let T: H— 2" be a maximal monotone operator and let J,: H — H be
the resolvent of 7 for each r > 0. Then we consider the following algorithm.
The sequence {x,} is generated by

Xo=Xx€eH,
Vn R Jp Xps (3.1)

xn+1=anx+(1_an) Yo nGN,

where {o,} =[0,1] and {r,} = (0, o0). Here the criterion for the approx-
imate computation of y, in (3.1) will be

Hyn_Jrnan<5n3 (32)

where > °_, 6, < oo. Motivated by Wittmann [ 18], we obtain the follow-
ing theorem.
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THEOREM 1. Let T H— 2" be a maximal monotone operator. Let x € H
and let {x,} be a sequence generated by (3.1) under criterion (3.2), where
{o,} =[0,1] and {r,} =(0, 00) satisfy lim,_, ,o,=0, X2 o, =00 and

lim,_, , r,=c0. If T~'0%# &, then {x,} converges strongly to Px, where P
is the metric projection of H onto T ~'0.

Proof. From T ~'0# (¥, there exists ue T ~'0 such that J,u=u for all
s> 0. Then we have

lxy —ul = llagx + (1 —otg) yo—ul
<o [lx —ul + (1 —op) [yo—ul
<ot [[x —ull 4+ (1 —a)(do + [1/,,x0 — ull)
<ot [[x —ull 4+ (1 —a)(do + [lxg — ul)

<l x—ul + do.

If | x,—ul < |[lx —ul + >4 J; holds for some ke N\{0}, we can similarly
show |[|x;,; —ul <|[lx —ul +3%_, J,. Therefore, from 32 6, < o0, {x,}
is bounded. Hence {J, x,} and {y,} are also bounded. Then, from r, — oo,
we obtain

. . Xn _Jr Xn
lim |4, x,|= lim | ———|=
Next we will show
lim sup {x— Px, y,— Px)» <0, (3.3)

n— oo

where P is the metric projection of H onto T ~!0. To prove this, it is
sufficient to show

lim sup {x—Px, J, x,— Px) <0

n— oo

because y, —J, x, = 0. Now there exists a subsequence {x,} < {x,} such
that

lim {x—Px,J, x, —Px)=limsup {x—Px, J, x,— Px).
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Since {J, x,} is bounded, we may assume that {J, x,} converges weakly

to some v e H. Then it follows that ve T ~'0. Indeed, since A, x,€TJ, x,
and T is monotone,

<Z _Jrnixnia 4 _Arnixnl-> = 0

whenever z'e 7Tz From 4, x, >0, we obtain {z—wv,z') >0 whenever
z € Tz. Hence, from the maximality of 7, we have ve T ~'0. Since P is the
metric projection of H onto T ~!0, we obtain

limsup {x—Px, J, x,— Px) = lim {x—Px,J, X, — Px>

n— oo i— oo

={(x—Px,v—Px)
<0.
Thus we get (3.3).

Let ¢>0. Then, by >° ,0,< o0, (33) and «, — 0, there exists me N
such that

M

J

0;< {x—Px, y,,—Px)g% and %y Hx—PxH2<%

d
v

e

for all n=m, where M =sup,,cn (6, + 2 ||x,,— Px||). This implies

Hxn+m+l_PxH2=Han+mx+(1_an+m) yn+m_PxH2
=2 X = Px[? + (1= ) 1V — PXI12

+2<Xn+m(1 _(xn+m)<x_an yn+m_Px>

<O(n+m§-|_(1 n+m)(5n+m+‘|Jr”+mxn+m_PxH)2
&

<O(nquE—i_(l _(Xn+m)(6n+m+ Hanrm_PxH)z
&

<0(11+m§—+_(1 _O(n+m)(5n+mM+ Hxn+m_PxH2)

<OC 5n+mM+(1 n+m) Hxn+m_PxH2

n—+m 2
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for all ne N. By induction, we obtain

n—+m 8
o= PrP<{ 1= T] (1=}

= 2
j=m
n+m n+m
+M Y 5,+{1‘[ (1aj)} Ix,, — Px|?
j=m j=m

for all ne N. This implies

& n+m n+m
o= PrP <5+ M Y 0+ { TT (1=} L, — Px1?
j=m j=m
e n+m n+m
<fout'Y oo (=Y 5 ) b ol
j=m j=m

Therefore, from Y * , a, = oo, we have

n=0"n
o

) ) £
lim sup [|x,, — Px[?=lim sup [[x, ;41 —Px\|2<§+M Y, J;<e.
n— oo n— oo

j=m

Since ¢ is arbitrary, we can conclude that {x,} converges strongly to Px.

4. WEAK CONVERGENCE THEOREM

In this section, we discuss the weak convergence of the proximal point
algorithm. The sequence {x,} is generated by

Xo=Xx€H,

Va2, X (4.1)

xn+1=anxn+(l_an)yna I’IGN,

where {a,} =[0,1] and {r,} =(0, 0).

LemMma 2. Let T: H— 2% be a maximal monotone operator and let P be
the metric projection of H onto T ~'0. Let x € H and let {x,} be a sequence
generated by (4.1) under criterion (3.2), where {a,} = [0, 1] and {r,} = (0, o).
If T'0# &, then { Px,} converges strongly to ve T ~'0, which is a unique
element of T ~'0 such that

lim ||x,—v||=inf{ lim |x,—ul :ueT ~'0}.
n— oo n— oo
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Proof. Let u be an element of T ~'0. Then we have

1% 41— ull = llot, 2, + (1 —at,) y, — |
<o, X, —ul +(1—a,) 1y, —u]
<o, [x, —ul +(1—a,)(d, + [/, x, —ull)
<o, [[x, —ul + (1 =2,)(9, + [[x, —ul)

<|x,—ul +9,

for all ne N. Hence, from > °_;J,< oo and Tan and Xu [17, Lemma 1],
g(u)=lm, _, . |x, —u| exists. Then g is a continuous convex function and
g(u) > oo as |lu|| » . Hence g attains its infimum over 7 ~'0. Let
I=inf{g(u):ueT~'0} and K={weT ~'0: g(w)=1}. Fix ve K. Since P
is the metric projection of H onto T ~!0, we have ||x,— Px, || < |x,— 0|
for all neN and hence lim sup,_, o l|x, — Px,| <[ Suppose that
lim sup,,_, o, |x,— Px,| <l Then we can choose a >0 and m e N such that
|l x, — Px, || <I—a for all n>=m. Therefore we have

n+h
1% +n+1—= Pyl < 3, — Px, [ + ) 6,

l=n

n+h
<l—a+ ) 0,

1=n

for all n>m and h e N. Hence we obtain
I< lim ||x,— Px,]|
h—

= lim ”xn+h+l _Pxn”

h— o

for all n=m. Since X%, 0, < o0, we have / </—a </ This is a contradic-
tion. So we can conclude that lim sup,,_, », |x,— Px, || =1

Next we will show lim,, _, ., Px,, =v. If not, there exists ¢ > 0 such that for
any he N, ||Px, —v| =¢ for some &' = h. Let b> 0 such that

b< /lz-i-g—z—l.
8
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Then we can take /&' € N such that

M

i

1

2
5.<%, Xy —Pxyl <I+b and  |x,—ol </+b,

Lo

’

where M =3 ,6,+2sup,n IIx, — (Px, +v)/2||. Therefore we have

2
<<

<

th'+U
Xnth+1— )

Px, +v
2

n+n 2
Xy — + > 6,~>
i=hn
2 n+n'

+M Y 9,

i=hn

Px, +v
2

Xp—

2

+2

th—th, 2

2

xh/_v
=2
2
2 n+n
—‘ +M > 0
i=h
[+ b\? [+b\2 &2 ni i
<2 — 20— ——+ M .
<2>+ <2> gm0
2 n+h

&
AR

Px, —v
2

=(I+b)*—

for all ne N. This implies

Px;, +vl|?

Xnth+1— 5

P < lim

n— oo

82

S(I+byP—=—+M Y o,
4 ¥
2

<U+b2-%
(1+5)° =%

<2

This is a contradiction. Therefore {Px,} converges strongly to ve T 0.
Consequently v is a unique element of 7°~'0 such that g(v)=inf{g(u):
ueT~'0}. 1

THEOREM 3. Let T: H— 2% be a maximal monotone operator and let
P be the metric projection of H onto T ~'0. Let xe H and let {x,} be a
sequence generated by (4.1) under criterion (3.2), where {a,} =[0, 1] and
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{r,} =(0, 00) satisfy o, €[0,k] for some k with 0<k <1 and lim,,_, r,
=ow. If T"'0# &, then {x,} converges weakly to ve T ~'0, where v=
lim Px

Proof. As in the proof of Lemma 2, lim, _, . [|x,—u| exists for all
ue T ~'0 and, in particular, {x,} is bounded. Therefore there exists a sub-
sequence {x, } < {x,} such that {x,} converges weakly to some ve H. We
will prove ve T ~'0. We first show lim,_, o |X,+1— V.| =0. In fact, we

have

(1=k) o [x,— a2
<(1—a,) a, 1x, = yal?
=0t X, —ul?+ (1 —a,) |y, —ull® =[x, —ul?

<oty 1%, = ull? + (1= o,) (0, + |, X, —ull)* = [, 4y —ul?

( )

+( )

<ot [1x, = ul? + (1= 0,)(3, + 1x, —ulD)® = x4y —u?
<ot (13, = ull? + (1 =0, ) (3, M + x, — 1) = [, 4y —ul?

<x,—ull? = lx, o —ul*+0,M,

where M =sup,.n (0,+2 |x,—ul). Therefore lim,_, , [|x, 1 —y.l|=
lim, , ,, &, [[x, — y,| =0. Then we may also assume that y, — v and hence
J, x, — v because y,—J, x, = 0. Since 4, x, € TJ, x, and T is monotone,

(z=J, x,,2 — A, x, > =0 (4.2)
holds whenever z' € Tz. Since r,, — o0, we have

Xp— Jrnxn

lim |4, x,| = lim =0.
n— oo " n— oo

n

Tending i to oo in (4.2), we obtain
{z—v,2'>=20

for all z, z’ with z’ € Tz. Then the maximality of T implies ve T ~'0.
From Lemma 2, { Px,} converges strongly to some v’ € T ~'0. Since P is
the metric projection of H onto T ~'0, we have

{Xp,— Px,, w—Px, > <0
for all we T~10. Then we have

v—v,w—0")><0
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for all we T ~!0. Putting w=10, we obtain ||v—v'||><0 and hence v="v'".
This implies that each weak subsequential limit of {x,} is equal to the
strong limit of { Px,}. Therefore {x,} converges weakly to ve T'~'0, where
v=Ilim Px

n— oo n*

Next we study the rate of convergence of (4.1). According to Rockafellar
[14], T ! is said to be Lipschitz continuous at 0 € H with modulus >0
if there exists a unique solution z, to 0e 7z (ie, T ~'0={z,}) and for
some 7 >0, we have

Iz =20l <a|wl (4.3)

whenever ze T ~'w and |w| <t. Rockafellar [14, Theorem 2] showed
that if 7! is Lipschitz continuous at 0 and r, — co, then the rate of
convergence of (1.1) is superlinear. Then, using Rockafellar’s method, we
obtain the following result.

THEOREM 4. Let T: H — 2" be a maximal monotone operator. Let {x,}
be a sequence generated by (4.1) under criterion

Hyn - Jrnxn H < Vn Hyn — Xy Ha

where {o,} < [0, 1], {r,} =(0, ) and {y,} [0, ) satisfy «, €[0, k] for
some k with 0 <k <1, lim,_, ., r,= 00 and lim,,_, ,, y,=0. If {x,} is bounded
and T ~" is Lipschitz continuous at 0 with modulus a >0, then {x,} converges
strongly to v=T ~'0. Moreover there exists an integer N >0 such that

Hxn+1_UH <Gonn_UH
for all n= N, where

a (1 _an)(/’tn+yn)

W, =—— 0,=o,+ 1 and 0<0,<1
—Vn

>
2 n n

a*+r?
for all n= N.

Proof. Since T ~! is Lipschitz continuous at 0 with modulus a >0, for
some 7> 0, we have ||z —v| <a |w| whenever ze T ~'w and |w|| < 7. From
I/, x,—vll <|lx,—vll, {J, x,} is bounded. Hence we obtain 4, x, — 0.
Then there exists an integer N>0 such that |4, x,| <7 and 0,=a,+
(1 —a,) (e, +7,)/(1 =p,) <1 forall n>N. Since J, x,, € T ~'4, x,, we have

1, %, — vl <a 4, x,] (4.4)
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for all n > N. It follows from (2.1) that
I, Xp = vlI> 477 14, x, [ < [ x, —v]> (4.5)

Combining (4.4) and (4.5), we obtain

H‘]rnxn_UH < > > Hxn_UH

a+r,

for all n > N. Therefore we have
Hyn - UH < Hyn - Jrnxn H + HJrnxn - UH

<yn Hyn_an—i_ > ”xn_UH

4
Jar+r?
<ynHyn_UH +yn ”xn_vH +1un Hxn_UH

for all n» > N. This implies

Un+ Vn
l—y

lyn—ol < 126, — vl

n
for all n> N. Hence we obtain
Hxn+l_UH <O(n Hxn_UH +(1 _an) Hyn_UH

1—
< (o Bl Bl

=0, [x,—vll

for all n = N. This completes the proof. |

This theorem shows that the rate of convergence of (4.1) is linear and if
lim,, _, ., o, =0 then the rate is superlinear.

5. APPLICATIONS TO MINIMIZATION PROBLEM

In this section, we investigate our algorithms in the case of 7' = 0f, where
fis a proper lower semicontinuous convex function. Our discussion follows
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Rockafellar [ 14, Section 4]. If T'=0f, the algorithm (3.1) is reduced to the
following:

Xo=x€eH,
. 1
y, ~argmin {f(z) -~ |2}, (5.1)
zeH 2}’n
xn+1:anx+(l_an)yna HGN,

where {a,} =[0,1] and {r,} =(0, ). Here we consider the following
criterion:

d(0, S,(yn)) <f—”, (5.2)

n

where Y2 (5,<c0, S,(z)=0f(z)+(z—x,)/r, and d(0, A)=inf{|x| :
xe€A}. About (5.2), the following lemma was proved in Rockafellar [ 14,
Proposition 3]

LemMmA 5. If y, is chosen according to criterion (5.2), then
Hyn - ']rnxn H < 5n

holds, where J, =(I+r,f)~".

THEOREM 6. Let f- H— (—o0,00] be a proper lower semicontinuous
convex function. Let xe€ H and let {x,} be a sequence generated by (5.1)
under criterion (5.2), where {o,} = [0, 1] and {r,} = (0, c0) satisfy lim,,_, ,, a,
=0, Y2 ,a,=00 and lim,_, , r,=o00. If (0f) "' 0% &, then {x,} converges
strongly to ve H, which is the minimizer of f nearest to x. Further we have

J(xn11) = f(0) S, (f(x) — ()

1—a,
_l’_

Hyn_UH (5n+ Hyn_an)

n

Proof. Putting g,(z) = f(z) + |z — x,|*/2r,, we obtain

00,2) = 3f(2) 4 - (== %, = 5,(2)

n

for all ze H and

J, x,=I+r,0f) ' x,=argmin g,(z).
" zeH
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It follows from Theorem I and Lemma 5 that {x,} converges strongly to
ve H and f(v)=min,_g f(z). Since 0g,(y,) is a nonempty closed convex
set, we can find the unique element w, of 0g,(y,) nearest to the origin.
Then we have

1
M}n_}ﬂi(yn_'xn)eaf‘(yn)
and

0
e <52 (53)

n

The definition of subdifferential yields

1
1002 £+ (0= 3= (0= ). (54)

n

From (5.3) and (5.4), we obtain
S 1) = f(0) =flo,x + (1 =) y,) — f(v)
<o, (f(x) = f(0) + (1 —o,)(f(y,) — f(v))
1
<00 = F0)+ (1=t (3000 == (0 =5 )

n

1
<0 = o)+ (1= ,) Ly =l ( Iy 1+ I, = 3

l—a,

<o, (f(x) = f(v) + 1yn =0l (00 + [y — 2,1

r

This completes the proof. |

Similarly we can show the following theorem concerning (4.1). Compare
this result with Theorem 6.

THEOREM 7. Let f. H— (—o0,00] be a proper lower semicontinuous
convex function. Let x € H and let {x,} be a sequence generated by

Xo=X,

. 1
¥, X argmin {f(z) +5 Iz —x, |2},

zeH

xn+1:(xnxn+(1_an)ynﬂ neN
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under criterion (5.2), where {a,} = [0, 1] and {r,} = (0, o0) satisfy a, € [0, k]

fo
a
to

r some k with 0 <k <1 and lim,,_, ,, r,=00. If (3f) ' 0% & and {u,} is
sequence of points of (9f)~' 0 nearest to x,, then {x,} converges weakly
ve H, which is the minimizer of f and satisfies v =1lim u,. Further we

n— oo

have

1

_d’n
=0l (0 4 llyn —xul)-

S 1) = f(0) S, (fx,) = f(0) +

Proof. As in the proof of Theorem 6, we can prove this theorem. |
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